AIMS Bioengineering, 2017, 4(1): 1-11. doi: 10.3934/bioeng.2017.1.1.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Feruloyl esterase from Aspergillus clavatus improves xylan hydrolysis of sugarcane bagasse

1 Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
2 Federal Institute of Education, Science and Technology, Paranavaí, PR, Brazil
3 Brazilian Bioethanol Science and Technology Laboratory, Campinas, SP, Brazil
4 Laboratory of Plant Physiological Ecology, University of São Paulo, São Paulo, SP, Brazil

Feruloyl esterase is a subclass of carboxylic acid esterases with the capacity to release ferulic acid and other cinnamic acids from plant cell walls and synthetic substrates. Feruloyl esterases act synergistically with xylanases removing ferulic acid residues esterified to arabinoxylans. Feruloyl esterase type D from Aspergillus clavatus (AcFAE) was expressed in Escherichia coli, purified, and applied with a commercial xylanase consortium (Novozymes) for hydrolysis of sugarcane bagasse. Feruloyl esterase plus xylanase increased 5.13-fold the releasing of ferulic acid from sugarcane bagasse. Removal of only 7.7% of ferulic acid content by AcFAE increased 97.3% the sugarcane bagasse hydrolysis by xylanase. These data support the use of AcFAE as an interesting adjuvant enzyme to improve lignocellulose digestion and biotechnological tool for biorefineries.
  Article Metrics

Keywords ferulic acid; feruloylated oligosaccharides; sugarcane biomass; lignocellulose; enzymatic hydrolysis

Citation: Dyoni M. de Oliveira, Victor Hugo Salvador, Thatiane R. Mota, Aline Finger-Teixeira, Rodrigo F. de Almeida, Douglas A. A. Paixão, Amanda P. De Souza, Marcos S. Buckeridge, Rogério Marchiosi, Osvaldo Ferrarese-Filho, Fabio M. Squina, Wanderley D. dos Santos. Feruloyl esterase from Aspergillus clavatus improves xylan hydrolysis of sugarcane bagasse. AIMS Bioengineering, 2017, 4(1): 1-11. doi: 10.3934/bioeng.2017.1.1


  • 1. Burton RA, Fincher GB (2012) Current challenges in cell wall biology in the cereals and grasses. Front Plant Sci 3: 1–6.
  • 2. de Souza AP, Grandis A, Leite DCC, et al. (2013) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenerg Res 7: 24–35.
  • 3. Baadhe RR, Potumarthi R, Mekala NK (2014) Influence of dilute acid and alkali pretreatment on reducing sugar production from corncobs by crude enzymatic method: A comparative study. Bioresource Technol 162: 213–217.    
  • 4. Buckeridge MS, dos Santos WD, de Souza AP (2010) Routes for cellulosic ethanol in Brazil. In: Cortez LAB, editor. Sugarcane bioethanol: R&D for productivity and sustainability. São Paulo: Edgard Blucher, 365–380.
  • 5. Álvarez C, Reyes-Sosa FM, Díez B (2016) Enzymatic hydrolysis of biomass from wood. Microbial Biotechnol 9: 149–156.    
  • 6. Yang B, Dai Z, Ding S-Y, et al. (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 4: 421–450.
  • 7. de Souza AP, Leite DCC, Pattathil S, et al. (2012) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenerg Res 6: 564–579.
  • 8. Oliveira DM, Finger-Teixeira A, Mota TR, et al. (2015) Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnol J 13: 1224–1232.    
  • 9. Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63: 647–652.    
  • 10. Faulds CB, Mandalari G, Curto RBL, et al. (2006) Synergy between xylanases from glycoside hydrolase family 10 and 11 and a feruloyl esterase in the release of phenolic acids from cereal arabinoxylan. Appl Microbiol Biotechnol 71: 622–629.    
  • 11. Tabka MG, Herpoël-Gimbert I, Monod F, et al. (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb Technol 39: 897–902.    
  • 12. Wong DWS, Chan VJ, Liao H, et al. (2013) Cloning of novel feruloyl esterase gene from rumen microbial metagenome and enzyme characterization in synergism with endoxylanase. J Ind Microbiol Biotechnol 40: 287–295.    
  • 13. Damásio ARL, Braga CMP, Brenelli LB, et al. (2013) Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Appl Microbiol Biotechnol 97: 6759–6767.
  • 14. Ascençao ARFDC, Dubery IA (2003) Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp. cubense. Phytochem 63: 679–686.    
  • 15. Masarin F, Gurpilhares DB, Baffa DCF, et al. (2011) Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content. Biotechnol Biofuels 4: 55.    
  • 16. van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnol Adv 30: 1458–1480.    
  • 17. Vardakou M, Katapodis P, Topakas E, et al. (2004) Synergy between enzymes involved in the degradation of insoluble wheat flour arabinoxylan. Innov Food Sci Emer Technol 5: 107–112.    
  • 18. Fazary AE, Ju YH (2007) Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Biochim Biophys Sin 39: 811–828.    
  • 19. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technol 199: 42–48.    
  • 20. Grabber JH, Ralph J, Hatfield RD (1998) Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J Agric Food Chem 46: 2609–2614.    
  • 21. Koseki T, Fushinobu S, Ardiansyah, et al. (2009) Occurrence, properties, and applications of feruloyl esterases. Applied Microbiol Biotechnol 84: 803–810.    
  • 22. Faulds CB, Williamson G (1991) The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. J Gen Microbiol 137: 2337–2345.
  • 23. de Vries RP, Michelsen B, Poulsen CH, et al. (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63(12): 4638–4644.
  • 24. Faulds CB, Mandalari G, Curto RBL (2006) Influence of the arabinoxylan composition on the susceptibility of mono- and dimeric ferulic acid release by Humicola insolens feruloyl esterases. J Sci Food Agric 86: 1623–1630.    
  • 25. Li J, Cai S, Luo Y, et al. (2011) Three feruloyl esterases in Cellulosilyticum ruminicola H1 Act synergistically to hydrolyze esterified polysaccharides. Appl Environ Microbiol 77(17): 6141–6147.
  • 26. Shin HD, Chen RR (2005) Production and characterization of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517. Enzyme Microb Technol 38: 478–485.
  • 27. Xu F, Sun J-X, Liu C-F, et al. (2005) Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal Chim Acta 552: 207–217.    
  • 28. Faulds CB, Williamson G (1995) Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-III) from Aspergillus niger. Appl Microbiol Biotechnol 43: 1082–1087.    
  • 29. de Vries RP, vanKuyk PA, Kester HCM, et al. (2002) Visser J. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compunds. Biochem J 363: 377–386.


This article has been cited by

  • 1. Thatiane Rodrigues Mota, Dyoni Matias de Oliveira, Rogério Marchiosi, Osvaldo Ferrarese-Filho, Wanderley Dantas dos Santos, Plant cell wall composition and enzymatic deconstruction, AIMS Bioengineering, 2018, 5, 1, 63, 10.3934/bioeng.2018.1.63
  • 2. Dyoni M. Oliveira, Thatiane R. Mota, Bianca Oliva, Fernando Segato, Rogério Marchiosi, Osvaldo Ferrarese-Filho, Craig B. Faulds, Wanderley D. dos Santos, Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds, Bioresource Technology, 2019, 10.1016/j.biortech.2019.01.064
  • 3. Thatiane R. Mota, Dyoni M. Oliveira, Gutierrez R. Morais, Rogério Marchiosi, Marcos S. Buckeridge, Osvaldo Ferrarese-Filho, Wanderley D. dos Santos, Hydrogen peroxide-acetic acid pretreatment increases the saccharification and enzyme adsorption on lignocellulose, Industrial Crops and Products, 2019, 140, 111657, 10.1016/j.indcrop.2019.111657
  • 4. Dyoni M. Oliveira, Thatiane R. Mota, Adriana Grandis, Gutierrez R. de Morais, Rosymar C. de Lucas, Maria L.T.M. Polizeli, Rogério Marchiosi, Marcos S. Buckeridge, Osvaldo Ferrarese-Filho, Wanderley D. dos Santos, Lignin plays a key role in determining biomass recalcitrance in forage grasses, Renewable Energy, 2019, 10.1016/j.renene.2019.10.020
  • 5. Dyoni M. Oliveira, Érica P. Hoshino, Thatiane R. Mota, Rogério Marchiosi, Osvaldo Ferrarese-Filho, Wanderley D. dos Santos, Modulation of cellulase activity by lignin-related compounds, Bioresource Technology Reports, 2020, 100390, 10.1016/j.biteb.2020.100390

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Dyoni M. de Oliveira, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved