Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Analysis of Passive RF-DC Power Rectification and Harvesting Wireless RF Energy for Micro-watt Sensors

University of Freiburg, Department of Microsystems Engineering - IMTEK. Laboratory for Electrical Instrumentation. Georges-Köhler-Allee 106, 79110 Freiburg, Germany

Special Issues: Energy Harvesting for Remote Power

In this paper, analytical modeling of passive rectifying circuits and the harvesting of electromagnetic (EM) power from intentionally generated as well as from ubiquitous sources are presented. The presented model is based on the linearization of rectifying circuits. The model provides an accurate method of determining the output characteristics of rectifying circuits. The model was verified with Advance Design System (ADS) Harmonic balance (HB) simulations and measurements. The results from the presented model were in agreement with simulations and measurements. Consequently design considerations and trade-off of radio frequency (RF) harvesters are discussed. To verify the exploitation of ambient RF power sources for operation of sensors, a dual-band antenna with a size of ~λ/4 at 900MHz and a passive dual-band rectifier that is able to power a commercial Thermo-Hygrometer requiring ~1.3V and 0.5MΩ from a global system for mobile communications (GSM) base station is demonstrated. The RF power delivered by the receiving dual-band antenna at a distance of about 110 m from the GSM base station ranges from -27 dBm to -50 dBm from the various GSM frequency bands. Additionally, wireless range measurements of the RF harvesters in the industrial, scientific and medical (ISM) band 868MHz is presented at indoor conditions.
  Article Metrics

Keywords Ambient RF energy harvesting; Schottky diode rectifier; dual-band RF harvester; rectenna; RF to DC rectification model; wireless power transmission

Citation: Antwi Nimo, Tobias Beckedahl, Thomas Ostertag, Leonhard Reindl. Analysis of Passive RF-DC Power Rectification and Harvesting Wireless RF Energy for Micro-watt Sensors. AIMS Energy, 2015, 3(2): 184-200. doi: 10.3934/energy.2015.2.184


  • 1. Harrison RG, Le Polozec X (1994) Nonsquarelaw behavior of diode detectors analyzed by the Ritz-Galerkin method.Microw Theory Tech IEEE Trans 42: 840-846.    
  • 2. McSpadden JO, Fan I, Chang K (1998) Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna.Microw Theory Tech IEEE Trans 46: 2053-2060.    
  • 3. Curty J-P, Joehl N, Krummenacher F, et al.(2005) A model for μ-power rectifier analysis and design.Circuits SystRegul Pap IEEE Trans52: 2771-2779.
  • 4. Barnett RE, Liu J, Lazar S (2009) A RF to DC voltage conversion model for multi-stage rectifiers in UHF RFID transponders.Solid-State Circuits IEEE 44: 354-370.    
  • 5. Nimo A, GrgićD, ReindlLM (2012) Optimization of passive low power wireless electromagnetic energy harvesters.Sensors 12: 13636-13663.    
  • 6. Nimo A, GrgićD, ReindlLM (2012) Ambient electromagnetic wireless energy harvesting using multiband planar antenna.Systems Signals Devices (SSD), 9th International Multi-Conference on 1-6.
  • 7. Sample A,Smith JR (2009) Experimental results with two wireless power transfer systems.Proceedings of the 4th international conference on Radio and wireless symposium, San Diego, CA, USA, 16-18.
  • 8. MikekaC,Arai H (2011) Design issues in radio frequency energy harvesting system.SustEnerg Harvesting Technologies—Past Present and Future, InTech.
  • 9. Vyas RJ, Cook BB, KawaharaY, et al. (2013) E-WEHP: A batteryless embedded sensor-platform wirelessly powered from ambient digital-TV signals.Microw Theory Tech IEEE Trans 61: 2491-2505.    
  • 10. PinuelaM, MitchesonPD, LucyszynS (2013) Ambient RF energy harvesting in urban and semi-urban environments.Microw Theory Tech IEEE Trans 61: 2715-2726.    
  • 11. Joe J, Chia M, MarathA, et al. (1997) Zero bias schottky diode model for low power, moderate current rectenna.DETS'97 Proc.
  • 12. Watson HA (1969) Schottky-barrier Devices.Microwave semiconductor devices and their circuit applications, New York; Maidenhead: McGraw-Hill.
  • 13. Maas SA (2003) Harmonic-Balance Analysis and Related Methods.Nonlinear microw RF circuits, Boston, MA: Artech House.
  • 14. SahC-T (1991) P/N and Other Junction Diodes.Fundamentals of solid-state electronics, Singapore; River Edge, NJ: World Scientific.
  • 15. AudetJ (2006) Q Calculations of L-C Circuits and Transmission Lines: A Unified Approach. QEX Mag 43-51.
  • 16. HUBER+SUHNER (2010)Rfid reader antenna: Spa 860/65/9/0/v (1308.17.0005).
  • 17. Chen H, Chen W, Cheng Y, et al.(2003) Dualband meander monopole antenna.Antennas Propagation Society IntSymp IEEE 3: 48-51.
  • 18. FriisHT (1946) A Note on a Simple Transmission Formula.Proc IRE 34: 254-256.    


This article has been cited by

  • 1. , , , ,
  • 2. Naveed Anwar Bhatti, Muhammad Hamad Alizai, Affan A. Syed, Luca Mottola, Energy Harvesting and Wireless Transfer in Sensor Network Applications, ACM Transactions on Sensor Networks, 2016, 12, 3, 1, 10.1145/2915918
  • 3. Ludmila Cojocaru, Satoshi Uchida, Piyankarage V. V. Jayaweera, Shoji Kaneko, Yasutake Toyoshima, Jotaro Nakazaki, Takaya Kubo, Hiroshi Segawa, Simulation of current–voltage curves for inverted planar structure perovskite solar cells using equivalent circuit model with inductance, Applied Physics Express, 2017, 10, 2, 025701, 10.7567/APEX.10.025701
  • 4. Sandhya Chandravanshi, M.J. Akhtar, Design of efficient rectifier using IDC and harmonic rejection filter in GSM/CDMA band for RF energy harvesting, Microwave and Optical Technology Letters, 2017, 59, 3, 681, 10.1002/mop.30365
  • 5. Ludmila Cojocaru, Satoshi Uchida, Piyankarage V. V. Jayaweera, Shoji Kaneko, Yasutake Toyoshima, Jotaro Nakazaki, Takaya Kubo, Hiroshi Segawa, Reply to “Comment on ‘Simulation of current–voltage curves for inverted structure perovskite solar cells using equivalent circuit model with inductance’ ”, Applied Physics Express, 2017, 10, 5, 059102, 10.7567/APEX.10.059102
  • 6. Kazuya Tada, Comment on “Simulation of current–voltage curves for inverted planar structure perovskite solar cells using equivalent circuit model with inductance”, Applied Physics Express, 2017, 10, 5, 059101, 10.7567/APEX.10.059101
  • 7. Ping Lu, Xue-Song Yang, Bing-Zhong Wang, A Two-Channel Frequency Reconfigurable Rectenna for Microwave Power Transmission and Data Communication, IEEE Transactions on Antennas and Propagation, 2017, 65, 12, 6976, 10.1109/TAP.2017.2766450
  • 8. Pankaj Agrawal, Akhilesh Tiwari, Uday Pratap Singh, , Soft-Computing-Based Nonlinear Control Systems Design, 2018, chapter 15, 311, 10.4018/978-1-5225-3531-7.ch015
  • 9. Mustafa Cansiz, Dogay Altinel, Gunes Karabulut Kurt, Efficiency in RF energy harvesting systems: A comprehensive review, Energy, 2019, 10.1016/j.energy.2019.02.100
  • 10. Rachit Dana, Parthit Sardhara, Akshay Sanghani, Prarthan Mehta, , Optical and Wireless Technologies, 2020, Chapter 6, 43, 10.1007/978-981-13-6159-3_6
  • 11. Saikat Paul, Aakash Ravichandran, Mukul Varshney, Sujata Pandey, , Smart Innovations in Communication and Computational Sciences, 2019, Chapter 18, 209, 10.1007/978-981-10-8968-8_18
  • 12. Usman Raza, Abdul Salam, On-Site and External Energy Harvesting in Underground Wireless, Electronics, 2020, 9, 4, 681, 10.3390/electronics9040681
  • 13. Andry Contreras, Maryory Urdaneta, Rectenas para el Cosechamiento de Energía de los Sistemas de Comunicaciones en RF: Una Revisión, Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, 2020, 43, 2, 98, 10.22209/rt.v43n2a06
  • 14. Daasari Surender, Taimoor Khan, Fazal A. Talukdar, Asok De, Yahia M.M. Antar, Al. P. Freundorfer, Key Components of Rectenna System: A Comprehensive Survey, IETE Journal of Research, 2020, 1, 10.1080/03772063.2020.1761268
  • 15. P. V. Bulat, A. A. Ukhov, I. A. Volobuev, S. V. Shapovalov, R. V. Li, Wireless Data Collecting Device with RF Energy Harvester for Aircraft, Russian Aeronautics, 2020, 63, 3, 508, 10.3103/S1068799820030186

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Antwi Nimo, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved