AIMS Mathematics, 2021, 6(2): 1607-1623. doi: 10.3934/math.2021096.

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Generalized linear differential equation using Hyers-Ulam stability approach

1 Department of Mathematics, Phuket Rajabhat University, 83000, Phuket, Thailand
2 Department of Mathematics, DMI- St. John the Baptist University, P. O. BOX. 406, Mangochi, Malawi, Central Africa
3 Department of Mathematics, Faculty of Science, Maejo University, Sansai 50290, Chiang Mai, Thailand
4 Department of Mathematical Sciences, Shibaura Institute of Technology, Saitama 337-8570, Japan
5 Institute for Intelligent Systems Research and Innovation, Deakin University, Waurn Ponds, VIC 3216, Australia
6 Department of Mathematics, Anand International College of Engineering, Jaipur, India International Center for Basic and Applied Sciences, Jaipur, 302029, India

In this paper, we study the Hyers-Ulam stability with respect to the linear differential condition of fourth order. Specifically, we treat ${\psi}$ as an interact arrangement of the differential condition, i.e., \begin{align*} {\psi}^{iv} ({\varkappa}) + {\xi}_1 {\psi}{'''} ({\varkappa})+ {\xi}_2 {\psi}{''} ({\varkappa}) + {\xi}_3 {\psi}' ({\varkappa}) + {\xi}_4 {\psi}({\varkappa}) = {\Psi}({\varkappa}) \end{align*} where ${\psi} \in c^4 [{\ell},{\mu}], {\Psi} \in [{\ell},{\mu}]$. We demonstrate that ${\psi}^{iv} ({\varkappa}) + {\xi}_1 {\psi}{'''} ({\varkappa})+ {\xi}_2 {\psi}{''} ({\varkappa}) + {\xi}_3 {\psi}' ({\varkappa}) + {\xi}_4 {\psi}({\varkappa}) = {\Psi}({\varkappa})$ has the Hyers-Ulam stability. Two examples are provided to illustrate the usefulness of the proposed method.
  Figure/Table
  Supplementary
  Article Metrics

Keywords Hyers-Ulam Stability; linear differential equation

Citation: Bundit Unyong, Vediyappan Govindan, S. Bowmiya, G. Rajchakit, Nallappan Gunasekaran, R. Vadivel, Chee Peng Lim, Praveen Agarwal. Generalized linear differential equation using Hyers-Ulam stability approach. AIMS Mathematics, 2021, 6(2): 1607-1623. doi: 10.3934/math.2021096

References

  • 1. S. M. Ulam, A collection of mathematical problems, New York, 29 (1960).
  • 2. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Academy Sci. United States Am., 27 (1941), 222.
  • 3. T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Society, 72 (1978), 297-300.
  • 4. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Society Japan, 2 (1950), 64-66.
  • 5. C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373-380.
  • 6. S. András, J. J. Kolumbán, On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions, Nonlinear Anal.: Theory, Methods Appl., 82 (2013), 1-11.
  • 7. S. András, A. R. Mészáros, Ulam-Hyers stability of dynamic equations on time scales via Picard operators, Appl. Math. Comput., 219 (2013), 4853-4864.
  • 8. M. Burger, N. Ozawa, A. Thom, On Ulam stability, Israel J. Math., 193 (2013), 109-129.
  • 9. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Academy Sci. United States Am., 27 (1941), 222.
  • 10. L. Cadariu, Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale, Univ. Vest Timisoara, Timisara, 2007.
  • 11. D. S. Cimpean, D. Popa, Hyers-Ulam stability of Euler's equation, Appl. Math. Lett., 24 (2011), 1539-1543.
  • 12. B. Hegyi, S. M. Jung, On the stability of Laplace's equation, Appl. Math. Lett., 26 (2013), 549-552.
  • 13. Y. H. Lee, K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Analy. Appl., 238 (1999), 305-315.
  • 14. S. M. Jung, Hyers-Ulam stability of linear differential equations of first order, ii, Appl. Math. Lett., 19 (2006), 854-858.
  • 15. T. Miura, S. Miyajima, S. Takahasi, A characterization of Hyers-Ulam stability of first order linear differential operators, J. Math. Analy. Appl., 286 (2003), 136-146.
  • 16. T. Miura, S. Takahasi, H. Choda, On the Hyers-Ulam stability of real continuous function valued differentiable map, Tokyo J. Math., 24 (2001), 467-476.
  • 17. T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Jap., 55 (2002), 17-24.
  • 18. S. E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach spacevalued differential equation y= λy, Bull. Korean Math. Soc., 39 (2002), 309-315.
  • 19. S. E. Takahasi, H. Takagi, T. Miura, S. Miyajima, The Hyers-Ulam stability constants of first order linear differential operators, J. Math. Anal. Appl., 296 (2004), 403-409.
  • 20. S. M. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17 (2004), 1135-1140.

 

This article has been cited by

  • 1. Vediyappan Govindan, Porpattama Hammachukiattikul, Grienggrai Rajchakit, Nallappan Gunasekaran, R. Vadivel, Kottakkaran Sooppy Nisar, A New Approach to Hyers-Ulam Stability of r -Variable Quadratic Functional Equations, Journal of Function Spaces, 2021, 2021, 1, 10.1155/2021/6628733

Reader Comments

your name: *   your email: *  

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved